宁波市鄞州首南恒宇激光雕刻厂

虚拟样机技术在汽车发动机盖锁设计中的应用(下)
分享到:

3结论 以虚拟样机技......
本文有[www.0574-laser.com]提供,请及时关注[www.0574-laser.com]提供的内容




3 结论
以虚拟样机技术为设计理念,通过UG软件,建立汽车发动机盖锁的虚拟样机模型。虚拟样机模型应是参数化的实体模型,从而满足用户不断修

改并最终实现最优设计或变形产品设计的要求。运用UG的Motion模块对发动机盖锁进行运动学仿真分析,建立了四个运动分析方案,在虚拟样

机模型中为每个运动分析方案建立相应的装配排列。将发动机盖锁的运动模拟以MPEG电影文件形式输出,形成电影动画,并用超级解霸3000播

放器进行播放。通过动画演示,可以更直观、正确的理解汽车发动机盖锁的工作原理和运动的基本过程,提高汽车发动机盖锁的设计水平。虚

拟样机技术可以减少实物模型和样机的投入,缩短产品开发周期、降低产品开发成本和制造成本,有利于实现产品的最优设计或变形产品设计



4>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>..
硅相增强锌基复合材料的微观组织研究
1 前言
   硅颗粒硬度高且具有一定的强度,像SiCp和Al2O3p一样,可作为复合材料增强体。ZA27合金中硅颗粒的复合将大大改善材质的磨损特性[

1,2]。硅颗粒又与SiCp和Al2O3p不同,它与铝之间可发生共晶反应,因此与基体组织之间具有良好的浸润性。这与SiC和Al2O3等颗粒与基体

合金的界面反应不同[3,4]。本文主要研究硅相增强的ZA27复合材料中硅相的形态控制以及界面反应特征。
2 试验方法
   研究对象是ZA27+16vol%Si的复合材料。常规的制备方法是将各种原材料,如Al-Si合金、锌和铝合金按成分配比置于一起进行熔融处理,

获得的组织是从均匀的液态随温度降低逐渐冷却、凝固时因界面前沿溶质再分布和成分偏析所产生的不平衡组织。本文提出将原材料Al-30%Si

和Zn-5.5%Al分别加热到不同熔融状态,然后复合搅拌并快速成形的流变混熔复合新方法,制备上述复合材料,并通过透射电子显微镜EM430(

附EDAX能谱,加速电压250kV)进行观察和分析。
3 实验结果与分析
3.1 Si相的形成及其控制
   Zn-27Al-16vol%Si通过常规铸造方法制得试样的组织,硅相粗大,分布在基体中。利用流变混熔方法制得的试样组织,硅相得到了大大细

化(图1)。这是因为Al-30%Si冷却时当温度降至液固相区,首先析出初晶硅,初晶硅不断长大,当加入Zn-5.5%Al熔液后在机械搅拌、流变混合

的作用下会对原熔液中的初生Si施加一定的剪切力,造成初生Si中形成裂纹而破碎,同时,在混合体系中对于Al-30%Si中的初生硅相则是非稳

相,这样在流变动力学作用下,使得硅相得到细化。部分初生Si破碎后并开始熔化。但由于初生硅在降温过程中已长大成相当尺寸,在快速混

熔和流变复合下,初生硅相得到碎化,但不可能完全熔化,碎化的硅相形态则得到改善,形成细小的规则的多角状的硅相,就像SiCp和Al2O3p

等一样,是良好的增强体。

图 1 流变混熔Zn-27Al-16vol%Si的组织
Fig.1 Rheologic mixed-melt structure of Zn-27Al-16vol%Si
3.2 Si相精细结构
   Al-Si合金中硅相的长大方式为小平面长大方式。同样在Zn-27Al-16vol%Al中,硅相也是小平面长大。由于其与基体合金热膨胀系数的差

别,在形成时产生较大的热应力,因而硅晶体中将产生机械孪晶、亚晶界和层错等缺陷。图2所示硅相呈长条状,并形成分枝,这是共晶硅相

的分枝生长。图3为硅相内部存在的缺陷,主要以面缺陷为主(孪晶、层错)。Si生长过程中出现分枝的原因在于:当共晶Si的生长在某一方向

受到阻碍,它可以通过孪晶机制转移到其它晶面上继续生长,从而在形态上呈现图2中的结构。
图 2 硅相的分枝生长
Fig.2 Branching growth of silicon phase
图 3 硅相内部的精细结构(缺陷)
Fig.3 Inner microstructure of silicon phase(defect)
3.3 界面形貌及其分析
   硅同锌铝基体之间界面观察发现:两者之间的界面平直。在α-Al同硅相之间的界面近铝的一侧均发现有细小的析出相,如图4a,其能谱

见图4c,由能谱分析证明该析出相为η相,η相附近有大量应力条纹。原因是:(1)基体与硅相之间热膨胀系数的显著差别,高温冷却时造成

很大的热应力。(2)η相依附于Si相形核长大,η相为六方结构,与硅相的晶格结构有较大差异,从而引起晶格的畸变,造成较大的内应力。

界面上还有另外一种粗大的短棒状η相,如图4b所示。该类η相是由于凝固时偏析,形成的锌铝离异共晶组织。界面上的两种η相与ZA27基体

组织α相中常见的二次析出η相(球形、椭球形)形态上有明显的区别。
图 4 硅相增强的锌基复合材料界面微结构(a,b)以及界面产物能谱分析(c)
本文有[www.0574-laser.com]提供,请及时关注[www.0574-laser.com]提供的内容
Fig.4 The interfacial precipitated product of silicon reinforced zinc matrix composites(a,b)
and its analysis by energy spectrum(c)
  没有析出处的界面平直光滑,共析组织(α+η)与硅相之间的界面形貌如图5所示。流变混合熔体凝固时,随着Si相析出长大,α相紧随其

后形成。由于凝固过程中的偏析,锌在初生Si相附近富集,富锌η相直接依附硅相界面形核析出(如图4a)或者形成离异共晶(如图4b)。图4a所

示的界面析出相细小,而离异共晶组织中的富锌η相则较粗大。
图 5 锌基复合材料的光滑界面
Fig.5 The smooth interface of silicon
reinforced zinc matrix composites
4 结论
  (1) 流变混熔复合方法是制备Si相增强锌基复合材料的一种行之有效的方法。
   (2) 硅相以粗大的多角状初晶硅和条状共晶硅的形式存在,硅相本身的精细结构中发现有大量缺陷,以面缺陷为主。
   (3) 硅相与基体的界面附近近基体一侧有η相。一种是细小的η析出相,另一种是凝固过程中形成的离异共晶组织中的η相。没有η相析

联系我们

地址: 浙江省.宁波市鄞州区宁姜公路(九曲小区二期旁)

邮编: 315040

联系人: 盛立峰

电话: 0574-87139378

传真: 0574-87139378

手机: 13867861670

邮箱: 85400329@qq.com

联系我们